Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Serrations in the stress-time curve for a bulk metallic glass composite with microscale crystalline precipitates were measured with exceptionally high temporal resolution and low noise. Similar measurements were made for a more brittle metallic glass that did not contain crystallites but that was also tested in uniaxial compression. Despite significant differences in the structure and stress-strain behavior, the statistics of the serrations for both materials follow a simple mean-field model that describes plastic deformation as arising from avalanches of slipping weak spots. The presence of the crystalline precipitates reduces the number of large slips relative to the number of small slips as recorded in the stress-time data, consistent with the model predictions. The results agree with mean-field predictions for a smaller weakening parameter for the composite than for the monolithic metallic glass; the weakening parameter accounts for the underlying microstructural differences between the two.more » « less
- 
            High–speed imaging directly correlates the propagation of a particular shear band with mechanical measurements during uniaxial compression of a bulk metallic glass. Imaging shows shear occurs simultaneously over the entire shear plane, and load data, synchronized and time–stamped to the same clock as the camera, reveal that shear sliding is coincident with the load drop of each serration. Digital image correlation agrees with these results. These data demonstrate that shear band sliding occurs with velocities on the order of millimeters per second. Fracture occurs much more rapidly than the shear banding events, thereby readily leading to melting on fracture surfaces.more » « less
- 
            Two distinct types of slip events occur during serrated plastic flow of bulk metallic glasses. These events are distinguished not only by their size but also by distinct stress drop rate profiles. Small stress drop serrations have fluctuating stress drop rates (with maximum stress drop rates ranging from 0.3–1 GPa/s), indicating progressive or intermittent propagation of a shear band. The large stress drop serrations are characterized by sharply peaked stress drop rate profiles (with maximum stress drop rates of 1–100 GPa/s). The propagation of a large slip is preceded by a slowly rising stress drop rate that is presumably due to the percolation of slipping weak spots prior to the initiation of shear over the entire shear plane. The onset of the rapid shear event is accompanied by a burst of acoustic emission. These large slips correspond to simultaneous shear with uniform sliding as confirmed by direct high-speed imaging and image correlation. Both small and large slip events occur throughout plastic deformation. The significant differences between these two types require that they be carefully distinguished in both modeling and experimental efforts.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
